霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Cell杂志 > 细胞报告 >

生物工程器官特异性组织具有高细胞密度和嵌入的血管通道

生物工程师在实验室中研究器官特异性组织的发展以用于治疗应用。然而,该方法非常具有挑战性,因为它需要制备和维持由约108个细胞/ mL组成的致密细胞构建体。研究团队使用由患者特异性诱导的多能干细胞(iPSC)衍生的类器官组成的器官构建块(OBB)作为实现必要的细胞密度,微结构和组织功能的途径。然而,迄今仍然将OBB组装成3-D组织构建体。在最近的一份报告中,Mark A. Skylar-Scott和Wyss生物启发工程研究所的跨学科研究团队和哈佛大学John A. Paulson工程与应用科学学院开发了一种新的生物制造方法。

代替3- d印刷构建与填补的细胞,科学家们组装数千OBBs到生活矩阵具有高密度的细胞,在其中它们引入了可灌注的使用血管通道3-d生物打印。OBB基质表现出所需的自我修复和粘弹性行为,以将牺牲性写入转换为功能组织(SWIFT)。作为一个例子,他们设计了一个可灌注的心脏组织,在七天的时间内同步融合和击打。SWIFT生物制造方法允许以治疗规模快速组装患者和器官特异性组织。该研究工作现已发表在Science Advances上。

生物工程用于治疗应用的整个器官是一项艰巨的任务,因为需要数十亿个细胞来快速组织成功能性微结构,通过血管通道补充营养。组织工程的最新进展已导致脑,肾和心脏类器官的自组装,具有与其体内器官对应物相似的几种特征。科学家通过产生胚状体来构建这样的类器官(EBs)由微孔内的iPSC(诱导的多能干细胞)制成,在静态条件下培养以分化成感兴趣的“微小器官”。这些器官作为理想的器官构建块(OBB)用于感兴趣的生物制造组织,具有所需的细胞密度,特征,微结构和功能。

然后,研究人员可以使用嵌入式3D打印技术将可灌注的血管通道网络引入到工程化的生命基质中。例如,当研究团队引入被称为方法牺牲墨水书写到蜂窝水凝胶和有机硅基质,结果导致了互连通道的3-d网络。通过这种策略,生物工程师开始开发具有自我修复,粘弹性响应的合成和生物聚合物基质,以最小化图案化协议的复杂性,形成3-D架构。然而,迄今为止,研究人员仅使用该方法构建无细胞或空间细胞矩阵。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!