霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Cell杂志 > 分子细胞 >

机器学习帮助确定药物如何影响大脑

机器学习可以提高我们确定了新的药物是否在大脑的工作原理,有可能使研究人员能够检测将完全由常规统计检验错过药物作用的能力,发现发表在新UCL研究脑。“目前的统计模型太简单了。它们无法捕捉到整个人的复杂生物变异,而将它们仅仅当作噪音丢弃。我们怀疑这可以部分解释为什么这么多药物试验在简单动物中起作用而在人的复杂大脑中失效。 ,能够对人类大脑进行完全复杂建模的机器学习可能会发现治疗效果,而这些效果本来是不会被遗漏的。”研究的主要作者,UCL神经学研究所的Parashkev Nachev博士说。

为了测试这一概念,研究团队研究了来自中风患者的大规模数据,提取了每位患者中风导致的脑部损伤的复杂解剖模式,从而在此过程中创建了有史以来组装的中风的解剖学注册图像的最大集合。作为中风影响的指标,他们使用了凝视方向,即从入院时在头部CT扫描上通常从眼睛中观察到的眼睛,以及通常在1-3天后进行的MRI扫描中所观察到的客观方向。

然后,他们模拟了一组假设药物的大规模荟萃分析,以查看是否可以通过机器学习来识别传统统计分析所遗漏的不同幅度的治疗效果。例如,给定一种可以使大脑病变缩小70%的药物治疗方法,他们使用常规(低维)统计测试以及高维机器学习方法测试了显着效果。

机器学习技术考虑了整个大脑是否存在损伤,将中风视为复杂的“指纹”,由多个变量描述。

“卒中试验倾向于使用相对较少的粗略变量,例如病变的大小,而忽略病变是集中在关键区域还是边缘区域。我们的算法改为了解了整个大脑的整个损伤模式,运用了数千个高分辨率的变量。通过阐明解剖结构和临床结果之间的复杂关系,它使我们能够以比传统技术更高的灵敏度检测出治疗效果。”该研究的第一作者徐天波(UCL神经病学研究所)解释说。 。

当研究减少病变本身体积的干预措施时,机器学习方法的优势尤其明显。对于传统的低维度模型,干预措施需要将病变缩小至其体积的78.4%,这样才能在试验中更频繁地检测到效果,而高维度模型则更有可能在手术后检测到效果病变仅缩小了55%。

“即使药物通常将病变的大小缩小一半或更多,传统的统计模型也将无法发挥作用,这仅仅是因为大脑的功能解剖结构的复杂性(如果不加以说明的话)会在临床测量中引入如此多的个体差异性结果,即使对行为没有明显影响,节省50%的患病大脑区域也是有意义的。没有多余的大脑之类的东西,” Nachev博士说。

研究人员说,他们的发现表明,机器学习对医学来说可能是无价的,尤其是当所研究的系统(例如大脑)非常复杂时。

“机器学习的真正价值不在于自动化我们发现自然可以轻松完成的事情,而是形式化非常复杂的决策。机器学习可以将临床医生的直观灵活性与推动循证医学的统计形式结合起来。可以将1000多个变量组合在一起的模型仍然严格且在数学上是合理的。我们现在可以高精度地捕获解剖结构和结果之间的复杂关系,” Nachev博士说。

“我们希望研究人员和临床医生下次需要进行临床试验时开始使用我们的方法,”合著者Geraint Rees教授(UCL生命科学学院院长)说。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!