霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Cell杂志 > 分子细胞 >

凭借其优雅的双螺旋结构和丰富的遗传特征 DNA已成为核酸的宠儿

Robert和Harriet Heilbrunn教授Robert B. Darnell说:“基因表达比打开一个开关要复杂得多。”“有一整层的调节改变了从基因产生的蛋白质的质量和数量。而且大部分发生在RNA水平。”

在大脑中,RNA作为基因调谐器的工作对于确保在正确的时间制造正确的蛋白质至关重要。当此过程出错时,后果可能很严重。达内尔的实验室最近发现,大脑对中风的反应取决于RNA亚型的精确调控。他们还了解到,影响基因调控的突变是某些自闭症谱系障碍的基础。

基因组的小帮手

DNA被卡在细胞核内,而RNA则可移动。在大脑中,可以在神经元之间的连接(称为突触)上找到所谓的信使RNA,这些信使RNA会被翻译成影响大脑信号的蛋白质。这一过程由另一类称为miroRNA的RNA调控,该RNA可响应大脑的动态变化而迅速促进或抑制蛋白质的产生。

在Cell Reports中描述的最新实验中,Darnell和他的同事在模拟中风后追踪了小鼠大脑中的microRNA活性。他们使用一种称为交联免疫沉淀或CLIP的技术,发现中风促使microRNA子集miR-29s显着减少。通常,这些分子限制了两种蛋白质GLT-1和aquaporin的产生。研究人员发现,当miR-29含量下降时,这些蛋白质的产生量就超过了正常水平。

GLT-1负责清除多余的谷氨酸,谷氨酸是一种在中风期间大量产生的化学物质,如果不加检查,会伤害大脑。因此,这种蛋白质产生的增加似乎减轻了与中风相关的脑损伤。另一方面,水通道蛋白的增加加剧了组织肿胀,进一步威胁了已经受损的大脑。简而言之,miR-29s的下降似乎可以同时帮助和阻碍中风的恢复。好消息是,更好地了解这两个过程的工作方式可能会指导开发新的非常精确的医疗工具。

“这项研究表明治疗中风的潜在药物靶标,”达内尔说。“例如,通过用一种药物人工诱导更多的GLT-1 mRNA,您可以调节被吸收的谷氨酸的量并减少对大脑的损害。”

秘密突变

为了了解导致人类疾病的原因,研究人员经常寻找基因突变(也称为DNA的“编码”区域),从而导致功能失调的蛋白质产生。但是,这种一般策略仅适用于家庭中传播的疾病,这些疾病是由特定蛋白质异常引起的,某些复杂情况并非如此。例如,尽管研究发现许多导致自闭症谱系障碍(ASD)和癫痫病发展的不同编码突变,但这些突变仅占病例总数的四分之一至三分之一。

因此,研究人员开始在DNA的非编码部分寻找不规则性-这些区域不直接编码蛋白质,而是使RNA负责调节基因。一旦被认为是“垃圾DNA”,这些区域现在对于确定细胞制造什么蛋白质,何时制造它们以及数量是至关重要的。根据达内尔(Darnell)的观点,分析非编码DNA对了解不符合常规遗传模式的疾病特别有用。

达内尔说:“有些疾病具有遗传成分,但它们并没有简单的家谱,您不能根据父母的遗传构成预测孩子患病的几率。””

为了找到与ASD相关的非编码突变,Darnell及其同事开发了一种新的家谱。他们使用一个大型基因数据库,首先分析了1,790个“微家庭”的DNA,每个家庭由一位母亲,一位父亲,一个患有ASD的孩子和一个不患有该病的孩子组成。然后,他们应用了由普林斯顿大学同事开发的机器学习算法,来确定患有该疾病的孩子与未受到该疾病影响的家人的遗传差异。

在《自然遗传学》中描述的这些发现表明,通过分析非编码突变,研究人员不仅可以更好地理解ASD,还可以更好地理解从神经系统疾病到心脏病的各种疾病。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!